Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Headache Pain ; 23(1): 99, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35948966

RESUMO

BACKGROUND: Photophobia, the aberrantly increased sensitivity to light, is a common symptom in migraine patients and light discomfort is frequently found as a trigger for migraine attacks. In behavioral studies, planned exposure to light was found to reduce headache in migraine patients with photophobia, potentially by increasing habituation to this migraine trigger. Here, we aimed to elucidate neurophysiological mechanisms of light exposure versus light deprivation in migraine patients using functional magnetic resonance imaging (fMRI). METHODS: Ten migraine patients (9 female, age = 28.70 ± 8.18 years) and 11 healthy controls (9 female, age = 23.73 ± 2.24 years) spent one hour on 7 consecutive days exposed to flashing light (Flash) or darkness (Dark) using a crossover design with a wash-out period of 3 months. Study participants kept a diary including items on interictal and ictal photophobia, presence and severity of headache 7 days before, during and 7 days after the interventions. One week before and one day after both interventions, fMRI using flickering light in a block design was applied. Functional activation was analyzed at whole-brain level and habituation of the visual cortex (V1) was modeled with the initial amplitude estimate and the corrected habituation slope. RESULTS: Mean interictal photophobia decreased after both interventions, but differences relative to the baseline did not survive correction for multiple comparisons. At baseline, flickering light induced activation in V1 was higher in the patients compared to the controls, but activation normalized after the Flash and the Dark interventions. V1 habituation indices correlated with headache frequency, headache severity and ictal photophobia. In the Flash condition, the individual change of headache frequency relative to the baseline corresponded almost perfectly to the change of the habituation slope compared to the baseline. CONCLUSIONS: On average, light exposure did not lead to symptom relief, potentially due to the short duration of the intervention and the high variability of the patients' responses to the intervention. However, the strong relationship between visual cortex habituation and headache symptoms and its modulation by light exposure might shed light on the neurophysiological basis of exposure treatment effects. TRIAL REGISTRATION: NCT05369910 (05/06/2022, retrospectively registered).


Assuntos
Transtornos de Enxaqueca , Fotofobia , Adulto , Estudos Cross-Over , Feminino , Cefaleia , Humanos , Imageamento por Ressonância Magnética , Transtornos de Enxaqueca/diagnóstico por imagem , Transtornos de Enxaqueca/terapia , Fotofobia/diagnóstico por imagem , Fotofobia/etiologia , Adulto Jovem
2.
J Transl Med ; 20(1): 26, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033118

RESUMO

BACKGROUND: With the high spatial resolution and the potential to reach deep brain structures, ultrasound-based brain stimulation techniques offer new opportunities to non-invasively treat neurological and psychiatric disorders. However, little is known about long-term effects of ultrasound-based brain stimulation. Applying a longitudinal design, we comprehensively investigated neuromodulation induced by ultrasound brain stimulation to provide first sham-controlled evidence of long-term effects on the human brain and behavior. METHODS: Twelve healthy participants received three sham and three verum sessions with transcranial pulse stimulation (TPS) focused on the cortical somatosensory representation of the right hand. One week before and after the sham and verum TPS applications, comprehensive structural and functional resting state MRI investigations and behavioral tests targeting tactile spatial discrimination and sensorimotor dexterity were performed. RESULTS: Compared to sham, global efficiency significantly increased within the cortical sensorimotor network after verum TPS, indicating an upregulation of the stimulated functional brain network. Axial diffusivity in left sensorimotor areas decreased after verum TPS, demonstrating an improved axonal status in the stimulated area. CONCLUSIONS: TPS increased the functional and structural coupling within the stimulated left primary somatosensory cortex and adjacent sensorimotor areas up to one week after the last stimulation. These findings suggest that TPS induces neuroplastic changes that go beyond the spatial and temporal stimulation settings encouraging further clinical applications.


Assuntos
Encéfalo , Córtex Somatossensorial , Imagem de Difusão por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Somatossensorial/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...